Show simple item record

dc.contributor.authorGupta, Apoorv
dc.contributor.authorBrockman Reizman, Irene M.
dc.contributor.authorReisch, Christopher R.
dc.contributor.authorPrather, Kristala L
dc.date.accessioned2020-07-17T20:56:19Z
dc.date.available2020-07-17T20:56:19Z
dc.date.issued2017-02
dc.date.submitted2016-08
dc.identifier.issn1546-1696
dc.identifier.urihttps://hdl.handle.net/1721.1/126255
dc.description.abstractMetabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We apply our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in titers of myo-inositol increased 5.5-fold and titers of glucaric acid increased from unmeasurable to >0.8 g/L, compared to the parent strains lacking dynamic flux control. Scaled-up production of these strains in benchtop bioreactors resulted in almost ten-and fivefold increases in specific titers of myo-inositol and glucaric acid, respectively. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable to >100 mg/L. ©2017 Nature America, Inc., part of Springer Nature.en_US
dc.description.sponsorshipNSF CAREER program (Grant No. CBET-0954986)en_US
dc.description.sponsorshipSynthetic Biology Engineering Research Center - SynBERC (Grant No. EEC-0540879)en_US
dc.description.sponsorshipDivision of Molecular and Cellular Biosciences (Grant No. MCB-1517913)en_US
dc.description.sponsorshipBiotechnology Training Program of the NIH (Grant No. T32GM008334)en_US
dc.description.sponsorshipUSDA National Institute of Food and Agriculture Postdoc Fellowship (Grant No. 2013-67012-21022)en_US
dc.language.isoen
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionofhttps://dx.doi.org/10.1038/NBT.3796en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleDynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuiten_US
dc.typeArticleen_US
dc.identifier.citationGupta, Apoorv et al., "Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit." Nature Biotechnology 35, 3 (March 2017): p. 273–279 doi. 10.1038/nbt.3796 ©2017 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-09-10T17:08:26Z
dspace.date.submission2019-09-10T17:08:29Z
mit.journal.volume35en_US
mit.journal.issue3en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record