MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unleashing the Synthetic Power of Plant Oxygenases: From Mechanism to Application

Author(s)
Mitchell, Andrew J.; Weng, Jing-Ke
Thumbnail
DownloadAccepted version (3.146Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Plant-specialized metabolites account for arguably the largest and most diverse pool of natural products accessible to humans. Conferring the plants’ selective traits, such as UV defense, pathogen resistance, and enhanced nutrient uptake, these chemicals are crucial to a species’ viability. During biosynthesis of these compounds, a vast array of specialized enzymes catalyze diverse chemical modifications, with oxidation being one of the most predominant (Smanski et al., 2016; Dong et al., 2018). Considering these observations, it is not surprising that within plant genomes, two families of oxygenases are the most abundant: the cytochrome P450 monooxygenases (P450s) and the iron/2-oxoglutarate-dependent oxygenases (Fe/2OGs). These and other oxygenases represent the synthetic workhorses of plant-specialized metabolism and also play key roles in primary metabolism, cellular regulation, and fitness. Furthermore, the challenging and selective chemistry they catalyze cannot currently be matched by synthetic chemists. Since many plant natural products serve as valuable pharmaceuticals and commodity chemicals, plant oxygenases represent a promising toolset for synthetic biologists to manipulate plant traits or develop biocatalysts (Harvey et al., 2015). Here, we review families of plant oxygenases and their chemistry and suggest potential applications.
Date issued
2019-01
URI
https://hdl.handle.net/1721.1/126265
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology
Journal
Plant Physiology
Publisher
American Society of Plant Biologists (ASPB)
Citation
Mitchell, Andrew J. and Jing-Ke Weng. "Unleashing the Synthetic Power of Plant Oxygenases: From Mechanism to Application." Plant Physiology 179, 3 (January 2019) © 2019 American Society of Plant Biologists
Version: Author's final manuscript
ISSN
0032-0889
1532-2548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.