Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA
Author(s)
Wang, Jin; Alvin Chew, Bing Liang; Lai, Yong; Dong, Hongping; Xu, Luang; Balamkundu, Seetharamsingh; Cai, Weiling Maggie; Cui, Liang; Liu, Chuan Fa; Fu, Xin-Yuan; Lin, Zhenguo; Shi, Pei-Yong; Lu, Timothy K; Luo, Dahai; Jaffrey, Samie R; Dedon, Peter C; ... Show more Show less
DownloadPublished version (1.480Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.
Date issued
2019-09Department
Massachusetts Institute of Technology. Synthetic Biology Center; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Nucleic Acids Research
Publisher
Oxford University Press (OUP)
Citation
Wang, Jin et al. "Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA." Nucleic Acids Research 47, 20 (September 2020): e130 © 2019 The Author(s)
Version: Final published version
ISSN
0305-1048
1362-4962