MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing shallower: perceptual loss trained Phase Extraction Neural Network (PLT-PhENN) for artifact-free reconstruction at low photon budget

Author(s)
Deng, Mo; Goy, Alexandre Sydney Robert; Li, Shuai; Arthur, Kwabena K.; Barbastathis, George
Thumbnail
DownloadPublished version (12.62Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Deep neural networks (DNNs) are efficient solvers for ill-posed problems and have been shown to outperform classical optimization techniques in several computational imaging problems. In supervised mode, DNNs are trained by minimizing a measure of the difference between their actual output and their desired output; the choice of measure, referred to as “loss function,” severely impacts performance and generalization ability. In a recent paper [A. Goy et al., Phys. Rev. Lett. 121(24), 243902 (2018)], we showed that DNNs trained with the negative Pearson correlation coefficient (NPCC) as the loss function are particularly fit for photon-starved phase-retrieval problems, though the reconstructions are manifestly deficient at high spatial frequencies. In this paper, we show that reconstructions by DNNs trained with default feature loss (defined at VGG layer ReLU-22) contain more fine details; however, grid-like artifacts appear and are enhanced as photon counts become very low. Two additional key findings related to these artifacts are presented here. First, the frequency signature of the artifacts depends on the VGG’s inner layer that perceptual loss is defined upon, halving with each MaxPooling2D layer deeper in the VGG. Second, VGG ReLU-12 outperforms all other layers as the defining layer for the perceptual loss.
Date issued
2020-01
URI
https://hdl.handle.net/1721.1/126326
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Optics Express
Publisher
The Optical Society
Citation
Deng, Mo et al. "Probing shallower: perceptual loss trained Phase Extraction Neural Network (PLT-PhENN) for artifact-free reconstruction at low photon budget." Optics Express 28, 2 (January 2020): 2511-2535 © 2020 Optical Society of America
Version: Final published version
ISSN
1094-4087

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.