MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces

Author(s)
Marzouk, Youssef M
Thumbnail
DownloadAccepted version (1017.Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Uncertainty quantification in expensive turbulent combustion simulations usually adopts response surface techniques to accelerate Monte Carlo sampling. However, it is computationally intractable to build response surfaces for high-dimensional kinetic parameters. We employ the active subspaces approach to reduce the dimension of the parameter space, such that building a response surface on the resulting low-dimensional subspace requires many fewer runs of the expensive simulation, rendering the approach suitable for various turbulent combustion models. We demonstrate this approach in simulations of the Cabra H 2 /N 2 jet flame, propagating the uncertainties of 21 kinetic parameters to the liftoff height. We identify a one-dimensional active subspace for the liftoff height using 84 runs of the simulations, from which a response surface with a one-dimensional input is built; the probability distribution of the liftoff height is then characterized by evaluating a large number of samples using the inexpensive response surface. In addition, the active subspace provides a global sensitivity metric for determining the most influential reactions. Comparison with autoignition tests reveals that the sensitivities to the HO 2 -related reactions in the Cabra flame are promoted by the diffusion processes. The present work demonstrates the capability of active subspaces in quantifying uncertainty in turbulent combustion simulations and provides physical insights into the flame via the active subspace-based sensitivity metric.
Date issued
2018-07
URI
https://hdl.handle.net/1721.1/126335
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Proceedings of the Combustion Institute
Publisher
Elsevier BV
Citation
Ji, Weiqi et al. “Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces.” Proceedings of the Combustion Institute, vol. 37, no. 2, 2019, pp. 2175-2182 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
1540-7489

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.