MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease

Author(s)
Meyer, Katharina; Feldman, Heather M.; Lu, Tao; Drake, Derek; Lim, Elaine T.; Ling, King-Hwa; Bishop, Nicholas A.; Pan, Ying; Seo, Jinsoo; Lin, Yuan-Ta; Su, Susan C. (Susan Chih-Chieh); Church, George M.; Tsai, Li-Huei; Yankner, Bruce A.; ... Show more Show less
Thumbnail
DownloadPublished version (6.224Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The molecular basis of the earliest neuronal changes that lead to Alzheimer’s disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.
Date issued
2019-01
URI
https://hdl.handle.net/1721.1/126408
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Cell Reports
Publisher
Elsevier BV
Citation
Meyer, Katharina et al. "REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease." Cell Reports 26, 5 (January 2019): P1112-1127.e9 © 2019 The Author(s)
Version: Final published version
ISSN
2211-1247

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.