MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study

Author(s)
Akeju, Oluwaseun; Hobbs, Lauren E.; Gao, Lei; Burns, Sara M.; Pavone, Kara J.; Plummer, George S.; Walsh, Elisa C.; Houle, Tim T.; Kim, Seong-Eun; Bianchi, Matt T.; Ellenbogen, Jeffrey M.; Brown, Emery Neal; ... Show more Show less
Thumbnail
DownloadAccepted version (679.7Kb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Objectives Sleep, which comprises of rapid eye movement (REM) and non-REM stages 1–3 (N1–N3), is a natural occurring state of decreased arousal that is crucial for normal cardiovascular, immune and cognitive function. The principal sedative drugs produce electroencephalogram beta oscillations, which have been associated with neurocognitive dysfunction. Pharmacological induction of altered arousal states that neurophysiologically approximate natural sleep, termed biomimetic sleep, may eliminate drug-induced neurocognitive dysfunction. Methods We performed a prospective, single-site, three-arm, randomized-controlled, crossover polysomnography pilot study (n = 10) comparing natural, intravenous dexmedetomidine- (1-μg/kg over 10 min [n = 7] or 0.5-μg/kg over 10 min [n = 3]), and zolpidem-induced sleep in healthy volunteers. Sleep quality and psychomotor performance were assessed with polysomnography and the psychomotor vigilance test, respectively. Sleep quality questionnaires were also administered. Results We found that dexmedetomidine promoted N3 sleep in a dose dependent manner, and did not impair performance on the psychomotor vigilance test. In contrast, zolpidem extended release was associated with decreased theta (∼5–8 Hz; N2 and N3) and increased beta oscillations (∼13–25 Hz; N2 and REM). Zolpidem extended release was also associated with increased lapses on the psychomotor vigilance test. No serious adverse events occurred. Conclusions Pharmacological induction of biomimetic N3 sleep with psychomotor sparing benefits is feasible. Significance These results suggest that α2a adrenergic agonists may be developed as a new class of sleep enhancing medications with neurocognitive sparing benefits.
Date issued
2017-10
URI
https://hdl.handle.net/1721.1/126436
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Clinical Neurophysiology
Publisher
Elsevier BV
Citation
Akeju, Oluwaseun et al. "Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study." Clinical Neurophysiology 129, 1 (January 2018): 69-78 © 2017 International Federation of Clinical Neurophysiology
Version: Author's final manuscript
ISSN
1388-2457

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.