A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules
Author(s)
Patel-Murray, Natasha Leanna; Adam, Miriam; Huynh, Nhan C; Wassie, Brook T.; Milani, Pamela; Fraenkel, Ernest; ... Show more Show less
DownloadPublished version (1.912Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with beneficial effects in models of Huntington’s Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these effects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specific assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases.
Date issued
2020-01Department
Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Scientific Reports
Publisher
Springer Science and Business Media LLC
Citation
Patel-Murray, Natasha L. et al. “A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules.” Scientific Reports, vol. 10, 2020, article 954 © 2020 The Author(s)
Version: Final published version
ISSN
0169-5487