MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transport Map Accelerated Markov Chain Monte Carlo

Author(s)
Marzouk, Youssef M
Thumbnail
DownloadPublished version (2.750Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a new framework for efficient sampling from complex probability distributions, using a combination of transport maps and the Metropolis-Hastings rule. The core idea is to use deterministic couplings to transform typical Metropolis proposal mechanisms (e.g., random walks, Langevin methods) into non-Gaussian proposal distributions that can more effectively explore the target density. Our approach adaptively constructs a lower triangular transport map-an approximation of the Knothe-Rosenblatt rearrangement-using information from previous Markov chain Monte Carlo (MCMC) states, via the solution of an optimization problem. This optimization problem is convex regardless of the form of the target distribution and can be solved efficiently without gradient information from the target probability distribution; the target distribution is instead represented via samples. Sequential updates enable efficient and parallelizable adaptation of the map even for large numbers of samples. We show that this approach uses inexact or truncated maps to produce an adaptive MCMC algorithm that is ergodic for the exact target distribution. Numerical demonstrations on a range of parameter inference problems show order-of-magnitude speedups over standard MCMC techniques, measured by the number of effectively independent samples produced per target density evaluation and per unit of wallclock time.
Date issued
2018-05
URI
https://hdl.handle.net/1721.1/126469
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
SIAM/ASA journal on uncertainty quantification
Publisher
Society for Industrial & Applied Mathematics (SIAM)
Citation
Parno, Matthew D. and Youssef Marzouk. “Transport Map Accelerated Markov Chain Monte Carlo.” SIAM/ASA journal on uncertainty quantification, vol. 6, no. 2, 2018, pp. 645-682 © 2018 The Author(s)
Version: Final published version
ISSN
2166-2525

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.