MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using braids to quantify interface growth and coherence in a rotor-oscillator flow

Author(s)
Filippi, Margaux; Budišić, Marko; Allshouse, Michael R.; Atis, Séverine; Peacock, Thomas
Thumbnail
DownloadPublished version (2.856Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The growth rate of material interfaces is an important proxy for mixing and reaction rates in fluid dynamics and can also be used to identify regions of coherence. Estimating such growth rates can be difficult, since they depend on detailed properties of the velocity field, such as its derivatives, that are hard to measure directly. When an experiment gives only sparse trajectory data, it is natural to encode planar trajectories as mathematical braids, which are topological objects that contain information on the mixing characteristics of the flow, in particular through their action on topological loops. We test such braid methods on an experimental system, the rotor-oscillator flow, which is well described by a theoretical model. We conduct a series of laboratory experiments to collect particle tracking and particle image velocimetry data, and we use the particle tracks to identify regions of coherence within the flow that match the results obtained from the model velocity field. We then use the data to estimate growth rates of material interface, using both the braid approach and numerical simulations. The interface growth rates follow similar qualitative trends in both the experiment and model, but have significant quantitative differences, suggesting that the two are not as similar as first seems. Our results shows that there are challenges in using the braid approach to analyze data, in particular the need for long trajectories, but that these are not insurmountable.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/126474
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Woods Hole Oceanographic Institution
Journal
Physical Review Fluids
Publisher
American Physical Society (APS)
Citation
Filippi, Margaux et al. "Using braids to quantify interface growth and coherence in a rotor-oscillator flow." Physical Review Fluids 5, 5 (May 2020): 054504 © 2020 American Physical Society
Version: Final published version
ISSN
2469-990X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.