Two independent modes of chromatin organization revealed by cohesin removal
Author(s)
Schwarzer, Wibke; Abdennur, Nezar; Goloborodko, Anton; Pekowska, Aleksandra; Fudenberg, Geoffrey; Loe-Mie, Yann; Fonseca, Nuno A; Huber, Wolfgang; Haering, Christian H.; Mirny, Leonid A; Spitz, Francois; ... Show more Show less
DownloadAccepted version (5.897Mb)
Terms of use
Metadata
Show full item recordAbstract
Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.
Date issued
2017-09Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Institute for Medical Engineering & ScienceJournal
Nature
Publisher
Springer Science and Business Media
Citation
Wibke Schwarzer, et al. "Two independent modes of chromatin organization revealed by cohesin removal." Nature 551, 7678 (September 2017): 51–56 © 2017 Macmillan Publishers Limited, part of Springer Nature
Version: Author's final manuscript
ISSN
0028-0836
1476-4687