Show simple item record

dc.contributor.authorJordan, Bruce W.
dc.contributor.authorKeeton, Allan G.
dc.contributor.authorPoonen, Bjorn
dc.contributor.authorRains, Eric M.
dc.contributor.authorShepherd-Barron, Nicholas
dc.contributor.authorTate, John T.
dc.date.accessioned2020-08-05T20:31:06Z
dc.date.available2020-08-05T20:31:06Z
dc.date.issued2018-03
dc.identifier.issn0010-437X
dc.identifier.issn1570-5846
dc.identifier.urihttps://hdl.handle.net/1721.1/126479
dc.description.abstractLet be an elliptic curve over a field k. Let [mathematical notation] . There is a functor [mathematical notation] from the category of finitely presented torsion-free left R-modules to the category of abelian varieties isogenous to a power of E, and a functor Hom (-, E) in the opposite direction. We prove necessary and sufficient conditions on for these functors to be equivalences of categories. We also prove a partial generalization in which E is replaced by a suitable higher-dimensional abelian variety over F[subscript P].en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/s0010437x17007990en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAbelian varieties isogenous to a power of an elliptic curveen_US
dc.typeArticleen_US
dc.identifier.citationJordan, Bruce W. et al. "Abelian varieties isogenous to a power of an elliptic curve." Compositio Mathematica 154, 5 (March 2018): 934-959 © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCompositio Mathematicaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-18T17:52:58Z
dspace.date.submission2019-11-18T17:53:02Z
mit.journal.volume154en_US
mit.journal.issue5en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record