MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approaching the upper limits of the local density of states via optimized metallic cavities

Author(s)
Yao, Wenjie; Benzaouia, Mohammed; Miller, Owen D.; Johnson, Steven G
Thumbnail
Downloadoe-28-16-24185.pdf (1.068Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
By computational optimization of air-void cavities in metallic substrates, we show that the local density of states (LDOS) can reach within a factor of ≈10 of recent theoretical upper limits and within a factor ≈4 for the single-polarization LDOS, demonstrating that the theoretical limits are nearly attainable. Optimizing the total LDOS results in a spontaneous symmetry breaking where it is preferable to couple to a specific polarization. Moreover, simple shapes such as optimized cylinders attain nearly the performance of complicated many-parameter optima, suggesting that only one or two key parameters matter in order to approach the theoretical LDOS bounds for metallic resonators.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/126500
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics
Journal
Optics Express
Publisher
The Optical Society
Citation
Yao, Wenjie et al. "Approaching the upper limits of the local density of states via optimized metallic cavities." Optics Express 28, 16 (July 2020): 24185-24197 © 2020 Optical Society of America
Version: Final published version
ISSN
1094-4087

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.