MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells

Author(s)
Debruyne, David N.; Dries, Ruben; Sengupta, Satyaki; Seruggia, Davide; Gao, Yang; Sharma, Bandana; Huang, Hao; Moreau, Lisa; McLane, Michael; Day, Daniel Sindt; Marco, Eugenio; Chen, Ting; Gray, Nathanael S.; Wong, Kwok-Kin; Orkin, Stuart H.; Yuan, Guo-Cheng; Young, Richard A.; George, Rani E.; ... Show more Show less
Thumbnail
DownloadAccepted version (7.859Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7–9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS—to promote regulatory chromatin interactions that support specific cancer phenotypes.
Date issued
2019-08
URI
https://hdl.handle.net/1721.1/126505
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Nature
Publisher
Springer Science and Business Media LLC
Citation
Debruyne, David N. et al. "BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells." Nature 572, 7771 (August 2019): 676–680 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0028-0836
1476-4687

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.