MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-Variance-Component Model Improves Genetic Prediction in Family Datasets

Author(s)
Tucker, George Jay; Loh, Po-Ru; MacLeod, Iona M.; Hayes, Ben J.; Goddard, Michael E.; Berger Leighton, Bonnie; Price, Alkes L.; ... Show more Show less
Thumbnail
DownloadSubmitted version (205.0Kb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Genetic prediction based on either identity by state (IBS) sharing or pedigree information has been investigated extensively with best linear unbiased prediction (BLUP) methods. Such methods were pioneered in plant and animal-breeding literature and have since been applied to predict human traits, with the aim of eventual clinical utility. However, methods to combine IBS sharing and pedigree information for genetic prediction in humans have not been explored. We introduce a two-variance-component model for genetic prediction: one component for IBS sharing and one for approximate pedigree structure, both estimated with genetic markers. In simulations using real genotypes from the Candidate-gene Association Resource (CARe) and Framingham Heart Study (FHS) family cohorts,. we demonstrate that the two-variance-component model achieves gains in prediction r(2) over standard BLUP at current sample sizes, and we project, based on simulations, that these gains will continue to hold at larger sample sizes. Accordingly, in analyses of four quantitative phenotypes from CARe and two quantitative phenotypes from FHS, the two-variance-component model significantly improves prediction r(2) in each case, with up to a 20% relative improvement. We also find that standard mixed-model association tests can produce inflated test statistics in datasets with related individuals, whereas the two-variance-component model corrects for inflation.
Date issued
2015-11
URI
https://hdl.handle.net/1721.1/126606
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
American Journal of Human Genetics
Publisher
Elsevier BV
Citation
Tucker, George et al. "Two-Variance-Component Model Improves Genetic Prediction in Family Datasets." American Journal of Human Genetics 97, 5 (November 2015): P677-690 © 2015 The American Society of Human Genetics
Version: Original manuscript
ISSN
0002-9297

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.