MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised learning of latent physical properties using perception-prediction networks

Author(s)
Zheng, David Y.; Wu, Jiajun; Tenenbaum, Joshua B
Thumbnail
DownloadAccepted version (2.135Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We propose a framework for the completely unsupervised learning of latent object properties from their interactions: the perception-prediction network (PPN). Consisting of a perception module that extracts representations of latent object properties and a prediction module that uses those extracted properties to simulate system dynamics, the PPN can be trained in an end-to-end fashion purely from samples of object dynamics. The representations of latent object properties learned by PPNs not only are sufficient to accurately simulate the dynamics of systems comprised of previously unseen objects, but also can be translated directly into human-interpretable properties (e.g. mass, coefficient of restitution) in an entirely unsuper-vised manner. Crucially, PPNs also generalize to novel scenarios: their gradient-based training can be applied to many dynamical systems and their graph-based structure functions over systems comprised of different numbers of objects. Our results demonstrate the efficacy of graph-based neural architectures in object-centric inference and prediction tasks, and our model has the potential to discover relevant object properties in systems that are not yet well understood.
Date issued
2018-06
URI
https://hdl.handle.net/1721.1/126611
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Association For Uncertainty in Artificial Intelligence (AUAI)
Citation
Zheng, David et al. “Unsupervised learning of latent physical properties using perception-prediction networks.” David Zheng's M. Eng. degree thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, June 2018, © 2018 The Author(s)
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.