MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old

Author(s)
Cornelissen, L.; Kim, S.E.; Lee, J.M.; Brown, Emery Neal; Purdon, P.L.; Berde, C.B.; ... Show more Show less
Thumbnail
DownloadPublished version (4.479Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Background: General anaesthetics generate spatially defined brain oscillations in the EEG that relate fundamentally to neural-circuit architecture. Few studies detailing the neural-circuit activity of general anaesthesia in children have been described. The study aim was to identify age-related changes in EEG characteristics that mirror different stages of early human brain development during sevoflurane anaesthesia. Methods: Multichannel EEG recordings were performed in 91 children aged 0–3 yr undergoing elective surgery. We mapped spatial power and coherence over the frontal, parietal, temporal, and occipital cortices during maintenance anaesthesia. Results: During sevoflurane exposure: (i) slow–delta (0.1–4 Hz) oscillations were present in all ages, (ii) theta (4–8 Hz) and alpha (8–12 Hz) oscillations emerge by ∼4 months, (iii) alpha oscillations increased in power from 4 to 10 months, (iv) frontal alpha-oscillation predominance emerged at ∼6 months, (v) frontal slow oscillations were coherent from birth until 6 months, and (vi) frontal alpha oscillations became coherent ∼10 months and persisted in older ages. Conclusions: Key developmental milestones in the maturation of the thalamo-cortical circuitry likely generate changes in EEG patterns in infants undergoing sevoflurane general anaesthesia. Characterisation of anaesthesia-induced EEG oscillations in children demonstrates the importance of developing age-dependent strategies to monitor properly the brain states of children receiving general anaesthesia. These data have the potential to guide future studies investigating neurodevelopmental pathologies involving altered excitatory–inhibitory balance, such as epilepsy or Rett syndrome.
Date issued
2018-04
URI
https://hdl.handle.net/1721.1/126623
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Neuroscience and Neuroanaesthesia
Publisher
Elsevier BV
Citation
Cornelissen, L. et al. "Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old." Neuroscience and Neuroanaesthesia 120, 6 (June 2018): 1274-1286. © 2018 The Author(s)
Version: Final published version
ISSN
0007-0912

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.