Show simple item record

dc.contributor.authorYildirim, Ilker
dc.contributor.authorSmith, Kevin A
dc.contributor.authorBelledonne, Mario E
dc.contributor.authorWu, Jiajun
dc.contributor.authorTenenbaum, Joshua B
dc.date.accessioned2020-08-18T14:44:35Z
dc.date.available2020-08-18T14:44:35Z
dc.date.issued2018-09
dc.identifier.urihttps://hdl.handle.net/1721.1/126640
dc.description.abstractHuman scene understanding involves not just localizing objects,but also inferring latent attributes that affect how the scene mightunfold, such as the masses of objects within the scene. Theseattributes can sometimes only be inferred from the dynamicsof a scene, but people can flexibly integrate this information toupdate their inferences. Here we propose a neurally plausibleEfficient Physical Inferencemodel that can generate and updateinferences from videos. This model makes inferences over theinputs to a generative model of physics and graphics, usingan LSTM based recognition network to efficiently approximaterational probabilistic conditioning. We find that this model notonly rapidly and accurately recovers latent object information,but also that its inferences evolve with more information in away similar to human judgments. The model provides a testablehypothesis about the population-level activity in brain regionsunderlying physical reasoning.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Science and Technology Centers (STCs): Integrative Partnerships Program (Award CCF-1231216)en_US
dc.language.isoen
dc.publisherCognitive Computational Neuroscienceen_US
dc.relation.isversionof10.32470/CCN.2018.1091-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleNeurocomputational Modeling of Human Physical Scene Understandingen_US
dc.typeArticleen_US
dc.identifier.citationYildirim, Ilker et al. “Neurocomputational Modeling of Human Physical Scene Understanding.” Paper presented at the CCN 2018 Conference on Cognitive Computational Neuroscience, Philadelphia, Pennsylvania, 5-8 September 2018, Cognitive Computational Neuroscience © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.relation.journalCCN 2018 Conference on Cognitive Computational Neuroscienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-08T15:12:52Z
dspace.date.submission2019-10-08T15:12:54Z
mit.journal.volume2018en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record