Show simple item record

dc.contributor.authorXu, Zhenjia
dc.contributor.authorLiu, Zhijian
dc.contributor.authorSun, Chen
dc.contributor.authorMurphy, Kevin
dc.contributor.authorFreeman, William T
dc.contributor.authorTenenbaum, Joshua B
dc.contributor.authorWu, Jiajun
dc.date.accessioned2020-08-18T20:14:02Z
dc.date.available2020-08-18T20:14:02Z
dc.date.issued2019-05
dc.identifier.urihttps://hdl.handle.net/1721.1/126655
dc.description.abstractHumans easily recognize object parts and their hierarchical structure by watching how they move; they can then predict how each part moves in the future. In this paper, we propose a novel formulation that simultaneously learns a hierarchical, disentangled object representation and a dynamics model for object parts from unlabeled videos. Our Parts, Structure, and Dynamics (PSD) model learns to, first, recognize the object parts via a layered image representation; second, predict hierarchy via a structural descriptor that composes low-level concepts into a hierarchical structure; and third, model the system dynamics by predicting the future. Experiments on multiple real and synthetic datasets demonstrate that our PSD model works well on all three tasks: segmenting object parts, building their hierarchical structure, and capturing their motion distributions.en_US
dc.language.isoen
dc.relation.isversionofhttps://openreview.net/forum?id=rJe10iC5K7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUnsupervised discovery of parts, structure, and dynamicsen_US
dc.typeArticleen_US
dc.identifier.citationXu, Zhenjia et al. "Unsupervised discovery of parts, structure, and dynamics." ICLR 2019: 7th International Conference on Learning Representations, May 6-9, 2019, New Orleans, Louisiana: https://openreview.net/forum?id=rJe10iC5K7 ©2019 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalICLR: International Conference on Learning Representationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-08T16:09:41Z
dspace.date.submission2019-10-08T16:09:45Z
mit.journal.volume7en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record