MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504–0248

Author(s)
Vantyghem, A. N.; McNamara, B. R.; Russell, H. R.; Edge, A. C.; Nulsen, P. E. J.; Combes, F.; Fabian, A. C.; McDonald, M.; Salomé, P.; ... Show more Show less
Thumbnail
DownloadPublished version (1.342Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present recent ALMA observations of the CO (1-0) and CO (3-2) emission lines in the brightest cluster galaxy of RXC J1504.1-0248, which is one of the most extreme cool core clusters known. The central galaxy contains 1.9 - 1010 M⊙ of molecular gas. The molecular gas morphology is complex and disturbed, showing no evidence for a rotationally supported structure in equilibrium. A total of 80% of the gas is situated within the central 5 kpc of the galactic center, while the remaining gas is located in a 20 kpc long filament. The cold gas has likely condensed out of the hot atmosphere. The filament is oriented along the edge of a putative X-ray cavity, suggesting that active galactic nucleus activity has stimulated condensation. This is energetically feasible, although the morphology is not as conclusive as systems whose molecular filaments trail directly behind buoyant radio bubbles. The velocity gradient along the filament is smooth and shallow. It is only consistent with freefall if it lies within 20- of the plane of the sky. The abundance of clusters with comparably low velocities suggests that the filament is not freefalling. Both the central gas and filamentary gas are coincident with bright UV emission from ongoing star formation. Star formation near the cluster core is consistent with the Kennicutt-Schmidt law. The filament exhibits increased star formation surface densities, possibly resulting from either the consumption of a finite molecular gas supply or spatial variations in the CO-to-H2 conversion factor.
Date issued
2018-08
URI
https://hdl.handle.net/1721.1/126662
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
American Astronomical Society
Citation
Vantyghem, A. N. et al. "Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504–0248." Astrophysical Journal 863, 2 (August 2018): 193 © 2018 The American Astronomical Society
Version: Final published version
ISSN
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.