Show simple item record

dc.contributor.authorSpeck, Jared R.
dc.date.accessioned2020-08-19T11:41:21Z
dc.date.available2020-08-19T11:41:21Z
dc.date.issued2019-07
dc.identifier.issn1424-0637
dc.identifier.urihttps://hdl.handle.net/1721.1/126671
dc.description.abstractWe derive a new formulation of the relativistic Euler equations that exhibitsremarkable properties. This new formulation consists of a coupled system of geometric wave,transport, and transport-div-curl equations, sourced by nonlinearities that are null formsrelative to the acoustical metric. Our new formulation is well-suited for various applications,in particular for the study of stable shock formation, as it is surveyed in the paper. Moreover,using the new formulation presented here, we establish a local well-posedness result showingthat the vorticity and the entropy of the fluid are one degree moredifferentiable comparedto the regularity guaranteed by standard estimates (assuming that the initial data enjoy theextra differentiability). This gain in regularity is essential for the study of shock formationwithout symmetry assumptions. Our results hold for an arbitrary equation of state, notnecessarily of barotropic type.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1162211)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Grant 454419)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/S00023-019-00801-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe Relativistic Euler Equations: Remarkable Null Structures and Regularity Propertiesen_US
dc.typeArticleen_US
dc.identifier.citationDisconzi M., Marcello and Jarad Speck. “The Relativistic Euler Equations: Remarkable Null Structures and Regularity Properties.” Annales Henri Poincaré, vol. 20, no. 7, 2019, pp. 2173 to 2270 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAnnales Henri Poincaréen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-20T19:29:24Z
dspace.date.submission2019-11-20T19:29:28Z
mit.journal.volume20en_US
mit.journal.issue7en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record