A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary
Author(s)
Speck, Jared R.
DownloadSubmitted version (518.5Kb)
Terms of use
Metadata
Show full item recordAbstract
We study the relativistic Euler equations on the Minkowski spacetime background. We make assumptions on the equation of state and the initial data that are relativistic analogs of the well-known physical vacuum boundary condition, which has played an important role in prior work on the non-relativistic compressible Euler equations. Our main result is the derivation, relative to Lagrangian (also known as co-moving) coordinates, of local-in-time a priori estimates for the solution. The solution features a fluid-vacuum boundary, transported by the fluid four-velocity, along which the hyperbolicity of the equations degenerates. In this context, the relativistic Euler equations are equivalent to a degenerate quasilinear hyperbolic wave-map-like system that cannot be treated using standard energy methods.
Date issued
2019-10Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Communications in partial differential equations
Publisher
Taylor & Francis Group, LLC.
Citation
Hadžić, Mahir, Steve Shkoller and Jarad Speck. “A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary.” Communications in partial differential equations, vol. 44, no. 10, 2019, pp. 859-906 © 2019 The Author(s)
Version: Original manuscript
ISSN
0360-5302