Show simple item record

dc.contributor.authorAjay, Anurag.
dc.contributor.authorBauza Villalonga, Maria
dc.contributor.authorWu, Jiajun
dc.contributor.authorFazeli, Nima
dc.contributor.authorTenenbaum, Joshua B
dc.contributor.authorRodriguez Garcia, Alberto
dc.contributor.authorKaelbling, Leslie P
dc.date.accessioned2020-08-19T14:15:08Z
dc.date.available2020-08-19T14:15:08Z
dc.date.issued2019-05
dc.identifier.isbn978-1-5386-6027-0
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/126674
dc.description.abstractPhysics engines play an important role in robot planning and control; however, many real-world control problems involve complex contact dynamics that cannot be characterized analytically. Most physics engines therefore employ approximations that lead to a loss in precision. In this paper, we propose a hybrid dynamics model, simulator-augmented interaction networks (SAIN), combining a physics engine with an object-based neural network for dynamics modeling. Compared with existing models that are purely analytical or purely data-driven, our hybrid model captures the dynamics of interacting objects in a more accurate and data-efficient manner. Experiments both in simulation and on a real robot suggest that it also leads to better performance when used in complex control tasks. Finally, we show that our model generalizes to novel environments with varying object shapes and materials.en_US
dc.description.sponsorshipNSF (nos. 1420316, 1523767, and 1723381)en_US
dc.description.sponsorshipAFOSR (Grant FA9550- 17-1-0165)en_US
dc.description.sponsorshipONR MURI (N00014-16-1-2007)en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ICRA.2019.8794358en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCombining physical simulators and object-based networks for controlen_US
dc.typeArticleen_US
dc.identifier.citationAjay, Anurag et al. "Combining physical simulators and object-based networks for control." 2019 International Conference on Robotics and Automation (ICRA 2019), May 20-26, 2019, Montreal, Quebec: 3217-23 doi: 10.1109/ICRA.2019.8794358 ©2019 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalInternational Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-08T16:24:57Z
dspace.date.submission2019-10-08T16:25:01Z
mit.journal.volume2019en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record