Show simple item record

dc.contributor.authorRigollet, Philippe
dc.contributor.authorWeed, Jonathan
dc.date.accessioned2020-08-20T00:59:20Z
dc.date.available2020-08-20T00:59:20Z
dc.date.issued2018-11
dc.identifier.issn1631-073X
dc.identifier.urihttps://hdl.handle.net/1721.1/126692
dc.description.abstractWe give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for the wide adoption of these tools in the machine learning community.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.crma.2018.10.010en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleEntropic optimal transport is maximum-likelihood deconvolutionen_US
dc.typeArticleen_US
dc.identifier.citationRigollet, Philippe and Jonathan Weed. "Entropic optimal transport is maximum-likelihood deconvolution." Comptes Rendus Mathematique 356, 11-12 (November 2018): 1228-1235 © 2018 Académie des sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalComptes Rendus Mathematiqueen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-19T17:33:20Z
dspace.date.submission2019-11-19T17:33:22Z
mit.journal.volume356en_US
mit.journal.issue11-12en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record