Show simple item record

dc.contributor.authorConway, Jared Thomas.
dc.contributor.authorBuongiorno, Jacopo
dc.contributor.authorGolay, Michael W
dc.date.accessioned2020-08-24T12:20:47Z
dc.date.available2020-08-24T12:20:47Z
dc.date.issued2019-10
dc.identifier.issnNuclear engineering and design
dc.identifier.urihttps://hdl.handle.net/1721.1/126733
dc.description.abstractThis research has investigated the effectiveness of the proposed security plan for the ONP-300 through the use of a simulation software developed by ARES Security Corporation which evaluates the plant design and security plan. This paper updates the security strategy in the earlier 2016 paper (ICONE24-61029, Charlotte, NC, Kindfuller et. al.) with the following significant additions: a modification of the plant design for security optimization, changes in the guard force based on simulations, placement of the protective barrier to prevent damage from ship explosions, and establishment of the shore station guard force, response team and key facilities. Different attack scenarios were investigated, and four design-basis threats were formulated based on guidance from industry professionals. Through the use of ARES software, results indicated that the initial platform design for the ONP 300 had line-of-sight issues for security officers on the top deck of the plant resulting in an unacceptable performance. This realization led to changes in the ONP 300′s security configuration and structural layout. Additional sensitivity analysis resulted in reduction of guard force size and emphasized the importance of redundant radar systems. The major contributions of this work are two-fold. First, implementation of security-enhancing features have been accomplished at the very early stage of the ONP design when innovative features can be best identified and implemented in a cost-effective manner. Second, application of a Monte Carlo numerical tool has helped confirm the effectiveness of the design to defeat a wide range of threat scenarios proving the robustness of the security design.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.NUCENGDES.2019.110160en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Buongiorno via Chris Sherratten_US
dc.titlePhysical security analysis and simulation of the multi-layer security system for the Offshore Nuclear Plant (ONP)en_US
dc.typeArticleen_US
dc.identifier.citationConway, Jarad et al. “Physical security analysis and simulation of the multi-layer security system for the Offshore Nuclear Plant (ONP).” Nuclear Engineering and Design, 352, (October 2019): 110160 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalNuclear Engineering and Designen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-21T14:02:10Z
dspace.date.submission2020-08-21T14:02:11Z
mit.journal.volume352en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record