Show simple item record

dc.contributor.authorVenkatesh, Humsa S.
dc.contributor.authorMorishita, Wade
dc.contributor.authorGeraghty, Anna C.
dc.contributor.authorSilverbush, Dana
dc.contributor.authorGillespie, Shawn M.
dc.contributor.authorArzt, Marlene
dc.contributor.authorTam, Lydia T.
dc.contributor.authorEspenel, Cedric
dc.contributor.authorPonnuswami, Anitha
dc.contributor.authorNi, Lijun
dc.contributor.authorWoo, Pamelyn J.
dc.contributor.authorTaylor, Kathryn R.
dc.contributor.authorAgarwal, Amit
dc.contributor.authorRegev, Aviv
dc.contributor.authorBrang, David
dc.contributor.authorVogel, Hannes
dc.contributor.authorHervey-Jumper, Shawn
dc.contributor.authorBergles, Dwight E.
dc.contributor.authorSuvà, Mario L.
dc.contributor.authorMalenka, Robert C.
dc.contributor.authorMonje, Michelle
dc.date.accessioned2020-08-24T14:15:59Z
dc.date.available2020-08-24T14:15:59Z
dc.date.issued2019-09
dc.date.submitted2018-09
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttps://hdl.handle.net/1721.1/126741
dc.description.abstractHigh-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron–glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41586-019-1563-yen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Regev via Courtney Crummetten_US
dc.titleElectrical and synaptic integration of glioma into neural circuitsen_US
dc.typeArticleen_US
dc.identifier.citationVenkatesh, Humsa S. et al. "Electrical and synaptic integration of glioma into neural circuits." Nature 573, 7775 (September 2019): 539–545 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalNatureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-20T17:33:29Z
dspace.date.submission2020-08-20T17:33:31Z
mit.journal.volume573en_US
mit.journal.issue7775en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record