MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Colossal oxygen vacancy formation at a fluorite-bixbyite interface

Author(s)
Sun, Lixin; Lu, Qiyang; Yildiz, Bilge
Thumbnail
DownloadPublished version (1.871Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Oxygen vacancies in complex oxides are indispensable for information and energy technologies. There are several means to create oxygen vacancies in bulk materials. However, the use of ionic interfaces to create oxygen vacancies has not been fully explored. Herein, we report an oxide nanobrush architecture designed to create high-density interfacial oxygen vacancies. An atomically well-defined (111) heterointerface between the fluorite CeO2 and the bixbyite Y2O3 is found to induce a charge modulation between Y3+ and Ce4+ ions enabled by the chemical valence mismatch between the two elements. Local structure and chemical analyses, along with theoretical calculations, suggest that more than 10% of oxygen atoms are spontaneously removed without deteriorating the lattice structure. Our fluorite–bixbyite nanobrush provides an excellent platform for the rational design of interfacial oxide architectures to precisely create, control, and transport oxygen vacancies critical for developing ionotronic and memristive devices for advanced energy and neuromorphic computing technologies.
Date issued
2020-03
URI
https://hdl.handle.net/1721.1/126752
Department
Massachusetts Institute of Technology. Laboratory for Electrochemical Interfaces; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Lee, Dongkyu et al. “Colossal oxygen vacancy formation at a fluorite-bixbyite interface.” Nature Communications, 11, 1 (March 2020): 1371 © 2020 The Author(s)
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.