Show simple item record

dc.contributor.authorTinguely, Roy Alexander
dc.contributor.authorRosenthal, A.
dc.contributor.authorSimpson, R.
dc.contributor.authorBallinger, S.
dc.contributor.authorCreely, Alexander James
dc.contributor.authorFrank, S.
dc.contributor.authorKuang, A. Q.
dc.contributor.authorLinehan, B. L.
dc.contributor.authorMcCarthy, W.
dc.contributor.authorMilanese, L. M.
dc.contributor.authorMontes, K. J.
dc.contributor.authorMouratidis, T.
dc.contributor.authorPicard, Julian F.
dc.contributor.authorRodriguez Fernandez, Pablo
dc.contributor.authorSandberg, A. J.
dc.contributor.authorSciortino, Francesco
dc.contributor.authorTolman, Elizabeth Ann
dc.contributor.authorZhou, M.
dc.contributor.authorSorbom, Brandon Nils
dc.contributor.authorHartwig, Zachary Seth
dc.contributor.authorWhite, A. E.
dc.date.accessioned2020-08-24T17:35:08Z
dc.date.available2020-08-24T17:35:08Z
dc.date.issued2019-06
dc.identifier.issn0920-3796
dc.identifier.urihttps://hdl.handle.net/1721.1/126757
dc.description.abstractAdvancements in high temperature superconducting technology have opened a path toward high-field, compact fusion devices. This new parameter space introduces both opportunities and challenges for diagnosis of the plasma. This paper presents a physics review of a neutron diagnostic suite for a SPARC-like tokamak [Greenwald et al., 2018, https://doi.org/10.7910/DVN/OYYBNU]. A notional neutronics model was constructed using plasma parameters from a conceptual device, called the MQ1 (Mission Q ≥ 1) tokamak. The suite includes time-resolved micro-fission chamber (MFC) neutron flux monitors, energy-resolved radial and tangential magnetic proton recoil (MPR) neutron spectrometers, and a neutron camera system (radial and off-vertical) for spatially-resolved measurements of neutron emissivity. Geometries of the tokamak, neutron source, and diagnostics were modeled in the Monte Carlo N-Particle transport code MCNP6 to simulate expected signal and background levels of particle fluxes and energy spectra. From these, measurements of fusion power, neutron flux and fluence are feasible by the MFCs, and the number of independent measurements required for 95% confidence of a fusion gain Q ≥ 1 is assessed. The MPR spectrometer is found to consistently overpredict the ion temperature and also have a 1000× improved detection of alpha knock-on neutrons compared to previous experiments. The deuterium-tritium fuel density ratio, however, is measurable in this setup only for trace levels of tritium, with an upper limit of n T /n D ≈ 6%, motivating further diagnostic exploration. Finally, modeling suggests that in order to adequately measure the self-heating profile, the neutron camera system will require energy and pulse-shape discrimination to suppress otherwise overwhelming fluxes of low energy neutrons and gamma radiation.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.FUSENGDES.2019.03.148en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleNeutron diagnostics for the physics of a high-field, compact, Q ≥ 1 tokamaken_US
dc.typeArticleen_US
dc.identifier.citationTinguely, R. A. et al. “Neutron diagnostics for the physics of a high-field, compact, Q ≥ 1 tokamak.” Fusion Engineering and Design, 143, (June 2019): 212-225 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.relation.journalFusion Engineering and Designen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-21T12:21:42Z
dspace.date.submission2020-08-21T12:21:44Z
mit.journal.volume143en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record