MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep long short-term memory networks for nonlinear structural seismic response prediction

Author(s)
Buyukozturk, Oral; Sun, Hao
Thumbnail
DownloadAccepted version (3.232Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This paper presents a comprehensive study on developing advanced deep learning approaches for nonlinear structural response modeling and prediction. Two schemes of the long short-term memory (LSTM) network are proposed for data-driven structural seismic response modeling. The proposed deep learning model, trained on available datasets, is capable of accurately predicting both elastic and inelastic response of building structures in a data-driven fashion as opposed to the classical physics-based nonlinear time history analysis using numerical methods. In addition, an unsupervised learning algorithm based on a proposed dynamic K-means clustering approach is established to cluster the seismic inputs in order to (1) generate the least but the most informative datasets for training the LSTM and (2) improve the prediction accuracy and robustness of the model trained with limited data. The performance of the proposed approach is successfully demonstrated through three proof-of-concept studies that include a nonlinear hysteretic system, a real-world building with field sensing data, and a steel moment resisting frame. The results show that the proposed LSTM network is a promising, reliable and computationally efficient approach for nonlinear structural response prediction, and offers significant potential in seismic fragility analysis of buildings for reliability assessment.
Date issued
2019-08
URI
https://hdl.handle.net/1721.1/126761
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Computers and Structures
Publisher
Elsevier BV
Citation
Zhang, Ruiyang et al. “Deep long short-term memory networks for nonlinear structural seismic response prediction.” Computers and Structures, 220, (August 2019): 55-68 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0045-7949

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.