Show simple item record

dc.contributor.authorKilloran, Nathan
dc.contributor.authorBromley, Thomas R.
dc.contributor.authorArrazola, Juan Miguel
dc.contributor.authorSchuld, Maria
dc.contributor.authorQuesada, Nicolás
dc.contributor.authorLloyd, Seth
dc.date.accessioned2020-08-27T17:49:03Z
dc.date.available2020-08-27T17:49:03Z
dc.date.issued2019-10
dc.date.submitted2018-08
dc.identifier.issn2643-1564
dc.identifier.urihttps://hdl.handle.net/1721.1/126828
dc.description.abstractWe introduce a general method for building neural networks on quantum computers. The quantum neural network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field. This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We show how a classical network can be embedded into the quantum formalism and propose quantum versions of various specialized models such as convolutional, recurrent, and residual networks. Finally, we present numerous modeling experiments built with the strawberry fields software library. These experiments, including a classifier for fraud detection, a network which generates tetris images, and a hybrid classical-quantum autoencoder, demonstrate the capability and adaptability of CV quantum neural networks.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/physrevresearch.1.033063en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titleContinuous-variable quantum neural networksen_US
dc.typeArticleen_US
dc.identifier.citationKilloran, Nathan et al. "Continuous-variable quantum neural networks." Physical Review Research 1, 3 (October 2019): 033063en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalPhysical Review Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-07-30T17:04:54Z
dspace.date.submission2020-07-30T17:04:57Z
mit.journal.volume1en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record