Show simple item record

dc.contributor.authorKim, Younhun
dc.contributor.authorKoehler, Frederic
dc.contributor.authorMoitra, Ankur
dc.contributor.authorMossel, Elchanan
dc.contributor.authorRamnarayan, Govind
dc.date.accessioned2020-08-31T23:39:41Z
dc.date.available2020-08-31T23:39:41Z
dc.date.issued2019-04
dc.identifier.isbn9783030170820
dc.identifier.isbn9783030170837
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/126860
dc.description.abstractReconstruction of population histories is a central problem in population genetics. Existing coalescent-based methods, like the seminal work of Li and Durbin (Nature, 2011), attempt to solve this problem using sequence data but have no rigorous guarantees. Determining the amount of data needed to correctly reconstruct population histories is a major challenge. Using a variety of tools from information theory, the theory of extremal polynomials, and approximation theory, we prove new sharp information-theoretic lower bounds on the problem of reconstructing population structure—the history of multiple subpopulations that merge, split and change sizes over time. Our lower bounds are exponential in the number of subpopulations, even when reconstructing recent histories. We demonstrate the sharpness of our lower bounds by providing algorithms for distinguishing and learning population histories with matching dependence on the number of subpopulations.en_US
dc.description.sponsorshipOffice of Naval Research MURI (N00014-16-1-2227)en_US
dc.description.sponsorshipNational Science Foundation (Grants CCF1665252, DMS-1737944 and CCF-1565235; Award CCF-1453261)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-17083-7_9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleHow Many Subpopulations Is Too Many?: Exponential Lower Bounds for Inferring Population Historiesen_US
dc.typeBooken_US
dc.identifier.citationKim, Younhun et al. "How Many Subpopulations Is Too Many?: Exponential Lower Bounds for Inferring Population Histories." International Conference on Research in Computational Molecular Biology, May 2019, Padua Italy, Springer International Publishing, April 2019. © 2019 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-15T18:10:59Z
dspace.date.submission2019-11-15T18:11:02Z
mit.journal.volumeInternational Conference on Research in Computational Molecular Biologyen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record