MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

Author(s)
Gupta, N.; Saro, A.; Mohr, J. J.; Benson, B. A.; Bocquet, S.; Capasso, R.; Carlstrom, J. E.; Chiu, I.; Crawford, T. M.; de Haan, T.; Dietrich, J. P.; Gangkofner, C.; Holzapfel, W. L.; McDonald, M.; Rapetti, D.; Reichardt, C. L.; ... Show more Show less
Thumbnail
DownloadSubmitted version (947.7Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg(2) SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 +/- 0.7 per cent of the clusters with detection significance xi >= 4.5 would be lost from the sample. Allowing for redshift evolution of the form ( 1 + z) (2.5) increases the incompleteness to 5.6 +/- 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.
Date issued
2017-01
URI
https://hdl.handle.net/1721.1/126886
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP)
Citation
Gupta, N. et al. "High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples." Monthly Notices of the Royal Astronomical Society 467, 3 (January 2017): 3737–3750 C © 2017 The Authors
Version: Original manuscript
ISSN
0035-8711
1365-2966

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.