MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples

Author(s)
Sapsis, Themistoklis Panagiotis
Thumbnail
DownloadAccepted version (3.329Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
For many important problems the quantity of interest is an unknown function of the parameters, which is a random vector with known statistics. Since the dependence of the output on this random vector is unknown, the challenge is to identify its statistics, using the minimum number of function evaluations. This problem can be seen in the context of active learning or optimal experimental design. We employ Bayesian regression to represent the derived model uncertainty due to finite and small number of input–output pairs. In this context we evaluate existing methods for optimal sample selection, such as model error minimization and mutual information maximization. We show that for the case of known output variance, the commonly employed criteria in the literature do not take into account the output values of the existing input–output pairs, while for the case of unknown output variance this dependence can be very weak. We introduce a criterion that takes into account the values of the output for the existing samples and adaptively selects inputs from regions of the parameter space which have an important contribution to the output. The new method allows for application to high-dimensional inputs, paving the way for optimal experimental design in high dimensions. ©2020 The Author(s) Published by the Royal Society. All rights reserved.
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/126917
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Publisher
The Royal Society
Citation
Sapsis, Themistoklis P., "Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, 2234 (February 2020): no. 20190834 doi. 10.1098/rspa.2019.0834 ©2020 Author(s)
Version: Original manuscript
ISSN
1471-2946

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.