Show simple item record

dc.contributor.authorFraggedakis, Dimitrios
dc.contributor.authorNadkarni, Neel
dc.contributor.authorGao, Tao
dc.contributor.authorZhou, Tingtao
dc.contributor.authorZhang, Yirui
dc.contributor.authorHan, Yu
dc.contributor.authorStephens, Ryan M.
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorBazant, Martin Z
dc.date.accessioned2020-09-03T22:45:08Z
dc.date.available2020-09-03T22:45:08Z
dc.date.issued2020-05
dc.date.submitted2020-03
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttps://hdl.handle.net/1721.1/127179
dc.description.abstractDriven phase separation in ion intercalation materials is known to result in different non-equilibrium phase morphologies, such as intercalation waves and shrinking-core structures, but the mechanisms of pattern selection are poorly understood. Here, based on the idea that the coarsening of the slowest phase is the rate limiting step, we introduce a scaling law that quantifies the transition from quasi-equilibrium intercalation-wave to diffusion-limited shrinking-core behavior. The scaling law is validated by phase-field simulations of single Li[subscript x]CoO[subscript 2] particles, in situ optical imaging of single Li[subscript x]C[subscript 6] particles undergoing transitions between stage 1 (x = 1) and 2 (x = 0.5) at different rates, and all the available literature data for single-particle imaging of Li[subscript x]CoO[subscript 2], Li[subscript x]C[subscript 6] and Li[subscript x]FePO[subscript 4]. The results are summarized in operational phase diagrams to guide simulations, experiments, and engineering applications of phase-separating active materials. Implications for Li-ion battery performance and degradation are discussed.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/d0ee00653jen_US
dc.rightsCreative Commons Attribution Noncommercial 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistry (RSC)en_US
dc.titleA scaling law to determine phase morphologies during ion intercalationen_US
dc.typeArticleen_US
dc.identifier.citationFraggedakis, Dimitrios et al. "A scaling law to determine phase morphologies during ion intercalation." Energy & Environmental Science 13, 7 (May 2020): 2142-2152 © 2020 The Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-07T13:37:31Z
dspace.date.submission2020-08-07T13:37:34Z
mit.journal.volume13en_US
mit.journal.issue7en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record