MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised learning for county-level typological classification for COVID-19 research

Author(s)
Lai, Yuan; Charpignon, Marie-Laure; Ebner, Daniel K.; Celi, Leo Anthony G.
Thumbnail
Download1-s2.0-S2666521220300028-main.pdf (1.863Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The analysis of county-level COVID-19 pandemic data faces computational and analytic challenges, particularly when considering the heterogeneity of data sources with variation in geographic, demographic, and socioeconomic factors between counties. This study presents a method to join relevant data from different sources to investigate underlying typological effects and disparities across typologies. Both consistencies within and variations between urban and non-urban counties are demonstrated. When different county types were stratified by age group distribution, this method identifies significant community mobility differences occurring before, during, and after the shutdown. Counties with a larger proportion of young adults (age 20–24) have higher baseline mobility and had the least mobility reduction during the lockdown.
Date issued
2020-08
URI
https://hdl.handle.net/1721.1/127198
Department
Massachusetts Institute of Technology. Department of Urban Studies and Planning; MIT Institute for Data, Systems, and Society; Institute for Medical Engineering and Science; Harvard--MIT Program in Health Sciences and Technology. Laboratory for Computational Physiology
Journal
Intelligence-Based Medicine
Publisher
Elsevier BV
Citation
Lai, Yuan et al. "Unsupervised learning for county-level typological classification for COVID-19 research." Forthcoming in Intelligence-Based Medicine 1-2 (November 2020): 100002
Version: Final published version
ISSN
2666-5212

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.