MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast magneto-ionic switching of interface anisotropy using yttria-stabilized zirconia gate oxide

Author(s)
Tan, Aik Jun; Huang, Mantao; Beach, Geoffrey Stephen
Thumbnail
DownloadPublished version (2.421Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 American Chemical Society. Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, tsw ∼100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (>103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/127206
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Lee, Ki-Young et al. “Fast magneto-ionic switching of interface anisotropy using yttria-stabilized zirconia gate oxide.” Nano Letters, 20, 5 (April 2020): 3435−3441 © 2020 The Author(s)
Version: Final published version
ISSN
1530-6984

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.