MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multitask learning deep neural networks to combine revealed and stated preference data

Author(s)
Wang, Shenhao; Wang, Qingyi; Zhao, Jinhua
Thumbnail
DownloadAccepted version (Embargoed until: 2022-12-01, 1011.Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze individual choices. While the nested logit (NL) model is the classical way to address the question, this study presents multitask learning deep neural networks (MTLDNNs) as an alternative framework, and discusses its theoretical foundation, empirical performance, and behavioral intuition. We first demonstrate that the MTLDNNs are theoretically more general than the NL models because of MTLDNNs’ automatic feature learning, flexible regularizations, and diverse architectures. By analyzing the adoption of autonomous vehicles (AVs), we illustrate that the MTLDNNs outperform the NL models in terms of prediction accuracy but underperform in terms of cross-entropy losses. To interpret the MTLDNNs, we compute the elasticities and visualize the relationship between choice probabilities and input variables. The MTLDNNs reveal that AVs mainly substitute driving and ride hailing, and that the variables specific to AVs are more important than the socio-economic variables in determining AV adoption. Overall, this work demonstrates that MTLDNNs are theoretically appealing in leveraging the information shared by RP and SP and capable of revealing meaningful behavioral patterns, although its performance gain over the classical NL model is still limited. To improve upon this work, future studies can investigate the inconsistency between prediction accuracy and cross-entropy losses, novel MTLDNN architectures, regularization design for the RP-SP question, MTLDNN applications to other choice scenarios, and deeper theoretical connections between choice models and the MTLDNN framework.
Date issued
2020-12
URI
https://hdl.handle.net/1721.1/127228
Department
Massachusetts Institute of Technology. Department of Urban Studies and Planning; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Choice Modelling
Publisher
Elsevier BV
Citation
Wang, Shenhao, Qingyi Wang and Jinhua Zhao. “Multitask learning deep neural networks to combine revealed and stated preference data.” Journal of Choice Modelling, 37 (December 2020): 100236 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
1755-5345

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.