MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovering latent activity patterns from transit smart card data: A spatiotemporal topic model

Author(s)
Zhao, Zhan; Zhao, Jinhua
Thumbnail
DownloadAccepted version (7.715Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Although automatically collected human travel records can accurately capture the time and location of human movements, they do not directly explain the hidden semantic structures behind the data, e.g., activity types. This work proposes a probabilistic topic model, adapted from Latent Dirichlet Allocation (LDA), to discover representative and interpretable activity categorization from individual-level spatiotemporal data in an unsupervised manner. Specifically, the activity-travel episodes of an individual user are treated as words in a document, and each topic is a distribution over space and time that corresponds to certain type of activity. The model accounts for a mixture of discrete and continuous attributes—the location, start time of day, start day of week, and duration of each activity episode. The proposed methodology is demonstrated using pseudonymized transit smart card data from London, U.K. The results show that the model can successfully distinguish the three most basic types of activities—home, work, and other. As the specified number of activity categories increases, more specific subpatterns for home and work emerge, and both the goodness of fit and predictive performance for travel behavior improve. This work makes it possible to enrich human mobility data with representative and interpretable activity patterns without relying on predefined activity categories or heuristic rules.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/127232
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Urban Studies and Planning
Journal
Transportation Research Part C: Emerging Technologies
Publisher
Elsevier BV
Citation
Zhao, Zhan, Haris N. Koutsopoulosb and Jinhua Zhao. “Discovering latent activity patterns from transit smart card data: A spatiotemporal topic model.” Transportation Research Part C: Emerging Technologies, 116 (July 2020): 102627 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0968-090X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.