MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CLEAR: A Holistic Figure-of-Merit for Post- and Predicting Electronic and Photonic-based Compute-system Evolution

Author(s)
Kimerling, Lionel C
Thumbnail
DownloadPublished version (2.846Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Continuing demands for increased computing efficiency and communication bandwidth have pushed the current semiconductor technology to its limit. This led to novel technologies with the potential to outperform conventional electronic solutions such as photonic pre-processors or accelerators, electronic-photonic hybrid circuits, and neural networks. However, the efforts made to describe and predict the performance evolution of compute-performance fall short to accurately predict and thereby explain the actually observed development pace with time; that is all proposed metrics eventually deviate from their development trajectory after several years from when they were originally proposed. This discrepancy demands a figure-of-merit that includes a holistic set of driving forces of the compute-system evolution. Here we introduce the Capability-to-Latency-Energy-Amount-Resistance (CLEAR) metric encompassing synchronizing speed, energy efficiency, physical machine size scaling, and economic cost. We show that CLEAR is the only metric to accurately describe the historical compute-system development. We find that even across different technology options CLEAR matches the observed (post-diction) constant rate-of-growth, and also fits proposed future compute-system (prediction). Therefore, we propose CLEAR to serve as a guide to quantitatively predict required compute-system demands at a given time in the future.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/127254
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Scientific Reports
Publisher
Springer Science and Business Media LLC
Citation
Sun, Shuai et al. “CLEAR: A Holistic Figure-of-Merit for Post- and Predicting Electronic and Photonic-based Compute-system Evolution.” Scientific Reports, 10, 1 (April 2020): © 2020 The Author(s)
Version: Final published version
ISSN
0169-5487

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.