MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene

Author(s)
Zhu, Taishan; France-Lanord, Arthur; Grossman, Jeffrey C.
Thumbnail
DownloadPublished version (5.690Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Lead Iodide (PbI₂) is a large bandgap 2D layered material that has potential for semiconductor applications. However, atomic level study of PbI2 monolayer has been limited due to challenges in obtaining thin crystals. Here, we use liquid exfoliation to produce monolayer PbI2 nanodisks (30-40 nm in diameter and > 99% monolayer purity) and deposit them onto suspended graphene supports to enable atomic structure study of PbI2. Strong epitaxial alignment of PbI2 monolayers with the underlying graphene lattice occurs, leading to a phase shift from the 1 T to 1 H structure to increase the level of commensuration in the two lattice spacings. The fundamental point vacancy and nanopore structures in PbI2 monolayers are directly imaged, showing rapid vacancy migration and self-healing. These results provide a detailed insight into the atomic structure of monolayer PbI2, and the impact of the strong van der Waals interaction with graphene, which has importance for future applications in optoelectronics.
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/127260
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Sinha, Sapna et al. “Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene.” Nature Communications, 11, 1 (February 2020): 823 © 2020 The Author(s)
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.