MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extreme events and their optimal mitigation in nonlinear structural systems excited by stochastic loads: Application to ocean engineering systems

Author(s)
Joo, Han Kyul; Mohamad, Mustafa A.; Sapsis, Themistoklis Panagiotis
Thumbnail
DownloadAccepted version (1.493Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We develop an efficient numerical method for the probabilistic quantification of the response statistics of nonlinear multi-degree-of-freedom structural systems under extreme forcing events, emphasizing accurate heavy-tail statistics. The response is decomposed to a statistically stationary part and an intermittent component. The stationary part is quantified using a statistical linearization method while the intermittent part, associated with extreme transient responses, is quantified through i) either a few carefully selected simulations or ii) through the use of effective measures (effective stiffness and damping). The developed approach is able to accurately capture the extreme response statistics orders of magnitude faster compared with direct methods. The scheme is applied to the design and optimization of small attachments that can mitigate and suppress extreme forcing events delivered to a primary structural system. Specifically, we consider the problem of suppression of extreme responses in two prototype ocean engineering systems. First, we consider linear and cubic springs and perform parametric optimization by minimizing the forth-order moments of the response. We then consider a more generic, possibly asymmetric, piecewise linear spring and optimize its nonlinear characteristics. The resulting asymmetric spring design far outperforms the optimal cubic energy sink and the linear tuned mass dampers.
Date issued
2017-09
URI
https://hdl.handle.net/1721.1/127272
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Ocean Engineering
Publisher
Elsevier BV
Citation
Joo, Han Kyul et al. "Extreme events and their optimal mitigation in nonlinear structural systems excited by stochastic loads: Application to ocean engineering systems." Ocean Engineering 142 (September 2017): 145-160 © 2017 Elsevier Ltd
Version: Author's final manuscript
ISSN
0029-8018

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.