MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy

Author(s)
Vohidov, Farrukh; Milling, Lauren Elizabeth; Chen, Qixian; Zhang, Wenxu; Bhagchandani, Sachin Haresh; Nguyen, Hung V.-T.; Irvine, Darrell J; Johnson, Jeremiah A.; ... Show more Show less
Thumbnail
DownloadPublished version (1.533Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 unported license https://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Bottlebrush copolymers are a versatile class of macromolecular architectures with broad applications in the fields of drug delivery, self-assembly, and polymer networks. Here, the modular nature of graft-through ring-opening metathesis polymerization (ROMP) is exploited to synthesize "ABC"triblock bottlebrush copolymers (TBCs) from polylactic acid (PLA), polyethylene glycol (PEG), and poly(N-isopropylacrylamide) (PNIPAM) macromonomers. Due to the hydrophobicity of their PLA domains, these TBCs self-assemble in aqueous media at room temperature to yield uniform ∼100 nm micelles that can encapsulate a wide range of therapeutic agents. Heating these micellar solutions above the lower critical solution temperature (LCST) of PNIPAM (∼32 °C) induces the rapid formation of multi-compartment hydrogels with PLA and PNIPAM domains acting as physical crosslinks. Following the synthesis and characterization of these materials in vitro, TBC micelles loaded with various biologically active small molecules were investigated as injectable hydrogels for sustained drug release in vivo. Specifically, intratumoral administration of TBCs containing paclitaxel and resiquimod-the latter a potent Toll-like receptor (TLR) 7/8 agonist-into mice bearing subcutaneous CT26 tumors resulted in a significantly enhanced therapeutic index compared to the administration of these two drugs alone. This effect is attributed to the TBC hydrogel maintaining a high local drug concentration, thus reducing systemic immune activation and local inflammation. Collectively, this work represents, to our knowledge, the first example of thermally-responsive TBCs designed for multi-compartment hydrogel formation, establishing these materials as versatile scaffolds for self-assembly and drug delivery.
Date issued
2020-06
URI
https://hdl.handle.net/1721.1/127276
Department
Massachusetts Institute of Technology. Department of Chemistry; Koch Institute for Integrative Cancer Research at MIT
Journal
Chemical Science
Publisher
Royal Society of Chemistry (RSC)
Citation
Vohidov, Farrukh et al. "ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy." Chemical Science 11, 23 (June 2020): 5974-5986 © 2020 The Royal Society of Chemistry
Version: Final published version
ISSN
2041-6520
2041-6539

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.