Show simple item record

dc.contributor.authorAshraf Gandomi, Yasser
dc.contributor.authorAaron, Doug S.
dc.contributor.authorNolan, Zachary B.
dc.contributor.authorAhmadi, Arya
dc.contributor.authorMench, Matthew M.
dc.date.accessioned2020-09-17T14:19:11Z
dc.date.available2020-09-17T14:19:11Z
dc.date.issued2020-06
dc.date.submitted2020-05
dc.identifier.issn2077-0375
dc.identifier.urihttps://hdl.handle.net/1721.1/127643
dc.description.abstractAmong various components commonly used in redox flow batteries (RFBs), the separator plays a significant role, influencing resistance to current as well as capacity decay via unintended crossover. It is well-established that the ohmic overpotential is dominated by the membrane and interfacial resistance in most aqueous RFBs. The ultimate goal of engineering membranes is to improve the ionic conductivity while keeping crossover at a minimum. One of the major issues yet to be addressed is the contribution of interfacial phenomena in the influence of ionic and water transport through the membrane. In this work, we have utilized a novel experimental system capable of measuring the ionic crossover in real-time to quantify the permeability of ionic species. Specifically, we have focused on quantifying the contributions from the interfacial resistance to ionic crossover. The trade-off between the mass and ionic transport impedance caused by the interface of the membranes has been addressed. The MacMullin number has been quantified for a series of electrolyte configurations and a correlation between the ionic conductivity of the contacting electrolyte and the Nafion<sup>&reg;</sup> membrane has been established. The performance of individual ion-exchange membranes along with a stack of various separators have been explored. We have found that utilizing a stack of membranes is significantly beneficial in reducing the electroactive species crossover in redox flow batteries compared to a single membrane of the same fold thickness. For example, we have demonstrated that the utilization of five layers of Nafion<sup>&reg;</sup> 211 membrane reduces the crossover by 37% while only increasing the area-specific resistance (ASR) by 15% compared to a single layer Nafion<sup>&reg;</sup> 115 membrane. Therefore, the influence of interfacial impedance in reducing the vanadium ion crossover is substantially higher compared to a corresponding increase in ASR, indicating that mass and ohmic interfacial resistances are dissimilar. We have expanded our analysis to a combination of commercially available ion-exchange membranes and provided a design chart for membrane selection based on the application of interest (short duration/high-performance vs. long-term durability). The results of this study provide a deeper insight into the optimization of all-vanadium redox flow batteries (VRFBs).en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionof10.3390/membranes10060126en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleDirect Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteriesen_US
dc.typeArticleen_US
dc.identifier.citationAshraf Gandomi, Yasser et al. "Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries." Membranes 10, 6 (June 2020): 126 ©2020 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalMembranesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-30T16:27:04Z
dspace.date.submission2020-06-30T16:27:04Z
mit.journal.volume10en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record