Show simple item record

dc.contributor.authorGilmore, Rachel Hoffman
dc.contributor.authorLiu, Yun
dc.contributor.authorShcherbakov-Wu, Wenbi
dc.contributor.authorDahod, Nabeel S.
dc.contributor.authorLee, Elizabeth M.
dc.contributor.authorWeidman, Mark Clayton
dc.contributor.authorLi, Huashan
dc.contributor.authorJean, Joel
dc.contributor.authorBulovic, Vladimir
dc.contributor.authorWillard, Adam P.
dc.contributor.authorGrossman, Jeffrey C.
dc.contributor.authorTisdale, William
dc.date.accessioned2020-09-21T18:13:44Z
dc.date.available2020-09-21T18:13:44Z
dc.date.issued2019-07
dc.date.submitted2019-05
dc.identifier.issn2590-2385
dc.identifier.urihttps://hdl.handle.net/1721.1/127667
dc.description.abstractWe explore the dynamic interaction of charge carriers between band-edge states and sub-band trap states in PbS quantum dot (QD) solids using time-resolved spectroscopy. In monodisperse arrays of 4- to 5-nm diameter PbS QDs, we observe an optically active trap state ∼100–200 meV below the band edge that occurs at a frequency of 1 in ∼2,500 QDs. Uncoupled QD solids with oleic acid ligands show trap-to-ground-state recombination that resembles Auger recombination. In electronically coupled QD solids, we observe entropically driven uphill thermalization of trapped charge carriers from the trap state to the band edge via two distinct mechanisms: Auger-assisted charge transfer (∼35 ps) and thermally activated hopping (∼500 ps). Photophysical characterization combined with atomistic simulations and high-resolution electron microscopy suggest that these states arise from epitaxially fused pairs of QDs rather than electron or hole traps at the QD surface, offering new strategies for improving the optoelectronic performance of QD materials.en_US
dc.description.sponsorshipDepartment of Energy (DOE), Office of Basic Energy Sciences (Awards DE-SC0010538,DE-SC0019345)en_US
dc.description.sponsorshipNational Science Foundation (Awards 1452857 and 1122374)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.matt.2019.05.015en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcechemRxiven_US
dc.titleEpitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solidsen_US
dc.typeArticleen_US
dc.identifier.citationGilmore, Rachel H. et al. "Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids." Matter 1, 1 (July 2019): P250-265 © 2019 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalMatteren_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-09-10T11:56:52Z
dspace.date.submission2020-09-10T11:56:55Z
mit.journal.volume1en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record