MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tait colorings, and an instanton homology for webs and foams

Author(s)
Kronheimer, Peter; Mrowka, Tomasz S
Thumbnail
DownloadAccepted version (901.8Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We use SO(3) gauge theory to define a functor from a category of unoriented webs and foams to the category of finite-dimensional vector spaces over the field of two elements. We prove a non-vanishing theorem for this SO(3) instanton homology of webs, using Gabai’s sutured manifold theory. It is hoped that the non-vanishing theorem may support a program to provide a new proof of the four-color theorem.
Date issued
2018-09
URI
https://hdl.handle.net/1721.1/127673
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of the European Mathematical Society
Publisher
European Mathematical Society Publishing House
Citation
Kronheimer, Peter and Tomasz Mrowka. "Tait colorings, and an instanton homology for webs and foams." Journal of the European Mathematical Society 21, 1 (September 2018): 55-119 © 2019 European Mathematical Society
Version: Author's final manuscript
ISSN
1435-9855

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.