Show simple item record

dc.contributor.authorPulido, Dagoberto
dc.contributor.authorSalas, Joaquín
dc.contributor.authorRös, Matthias
dc.contributor.authorPuettmann, Klaus
dc.contributor.authorKaraman, Sertac
dc.date.accessioned2020-09-23T17:24:15Z
dc.date.available2020-09-23T17:24:15Z
dc.date.issued2020-07-24
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/1721.1/127684
dc.description.abstractDetecting individual trees and quantifying their biomass is crucial for carbon accounting procedures at the stand, landscape, and national levels. A significant challenge for many organizations is the amount of effort necessary to document carbon storage levels, especially in terms of human labor. To advance towards the goal of efficiently assessing the carbon content of forest, we evaluate methods to detect trees from high-resolution images taken from unoccupied aerial systems (UAS). In the process, we introduce the Digital Elevated Vegetation Model (DEVM), a representation that combines multispectral images, digital surface models, and digital terrain models. We show that the DEVM facilitates the development of refined synthetic data to detect individual trees using deep learning-based approaches. We carried out experiments in two tree fields located in different countries. Simultaneously, we perform comparisons among an array of classical and deep learning-based methods highlighting the precision and reliability of the DEVM.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionof10.3390/rs12152379en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleAssessment of tree detection methods in multispectral aerial imagesen_US
dc.typeArticleen_US
dc.identifier.citationPulido, Dagoberto et al. "Assessment of tree detection methods in multispectral aerial images." Remote Sensing 12, 15 (July 2020): 2379 ©2020 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalRemote Sensingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-21T13:50:42Z
dspace.date.submission2020-08-21T13:50:42Z
mit.journal.volume12en_US
mit.journal.issue15en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record