Show simple item record

dc.contributor.authorGhimire, Madhav Prasad
dc.contributor.authorFacio, Jorge I
dc.contributor.authorYou, Jhih-Shih
dc.contributor.authorYe, Linda
dc.contributor.authorCheckelsky, Joseph
dc.contributor.authorFang, Shiang
dc.contributor.authorKaxiras, Efthimios
dc.contributor.authorRichter, Manuel
dc.contributor.authorvan den Brink, Jeroen
dc.date.accessioned2020-10-05T22:01:46Z
dc.date.available2020-10-05T22:01:46Z
dc.date.issued2019-12
dc.date.submitted2019-10
dc.identifier.issn2643-1564
dc.identifier.urihttps://hdl.handle.net/1721.1/127813
dc.description.abstractAs they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predicted to strongly affect the transverse electronic response, like in the anomalous Hall or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the Fermi level, which implies the band structure must be tuned by an external parameter, e.g., chemical doping. Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by rotation of the magnetization. First, taking as example the elementary magnet hcp-Co, we use electronic structure calculations based on density-functional theory to show that by canting the magnetization away from the easy axis, Weyl nodes can be driven exactly to the Fermi surface. Second, we show that the same phenomenology applies to the kagome ferromagnet Co₃Sn₂S₂, in which we additionally show how the dynamics in energy and momentum of the Weyl nodes affects the calculated anomalous Hall and Nernst conductivities. Our results highlight how the intrinsic magnetic anisotropy can be used to engineer Weyl physics.en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Grant GBMF3848)en_US
dc.description.sponsorshipUnited States—Israel Binational Science Foundation (Grant 2016389)en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PHYSREVRESEARCH.1.032044en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titleCreating Weyl nodes and controlling their energy by magnetization rotationen_US
dc.typeArticleen_US
dc.identifier.citationGhimire, Madhav Prasad et al. "Creating Weyl nodes and controlling their energy by magnetization rotation." Physical Review Research 1, 3 (December 2019): 032044(R)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalPhysical Review Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-22T17:33:21Z
dspace.orderedauthorsGhimire, MP; Facio, JI; You, J-S; Ye, L; Checkelsky, JG; Fang, S; Kaxiras, E; Richter, M; van den Brink, Jen_US
dspace.date.submission2020-09-22T17:33:27Z
mit.journal.volume1en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record