MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cell swelling, softening and invasion in a three-dimensional breast cancer model

Author(s)
Han, Yulong; Pegoraro, Adrian F.; Li, Hui; Li, Kaifu; Yuan, Yuan; Xu, Guoqiang; Gu, Zichen; Sun, Jiawei; Hao, Yukun; Gupta, Satish Kumar; Li, Yiwei; Tang, Wenhui; Kang, Hua; Teng, Lianghong; Fredberg, Jeffrey J.; Guo, Ming; ... Show more Show less
Thumbnail
DownloadAccepted version (1.225Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/127818
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Physics
Publisher
Springer
Citation
Han, Yu Long et al. "Cell swelling, softening and invasion in a three-dimensional breast cancer model." Nature Physics 16, 1 (October 2019): 101–108 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
1745-2473
1745-2481

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.