MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling manholes to home in on SARS-CoV-2 infections

Author(s)
Larson, Richard Charles; Berman, Oded; Nourinejad, Mehdi
Thumbnail
Downloadjournal.pone.0240007.pdf (3.300Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
About 50% of individuals infected with the novel Coronavirus (SARS-CoV-2) suffer from intestinal infection as well as respiratory infection. They shed virus in their stool. Municipal sewage systems carry the virus and its genetic remnants. These viral traces can be detected in the sewage entering a wastewater treatment plant (WTP). Such virus signals indicate community infections but not locations of the infection within the community. In this paper, we frame and formulate the problem in a way that leads to algorithmic procedures homing in on locations and/or neighborhoods within the community that are most likely to have infections. Our data source is wastewater sampled and real-time tested from selected manholes. Our algorithms dynamically and adaptively develop a sequence of manholes to sample and test. The algorithms are often finished after 5 to 10 manhole samples, meaning that—in the field—the procedure can be carried out within one day. The goal is to provide timely information that will support faster more productive human testing for viral infection and thus reduce community disease spread. Leveraging the tree graph structure of the sewage system, we develop two algorithms, the first designed for a community that is certified at a given time to have zero infections and the second for a community known to have many infections. For the first, we assume that wastewater at the WTP has just revealed traces of SARS-CoV-2, indicating existence of a “Patient Zero” in the community. This first algorithm identifies the city block in which the infected person resides. For the second, we home in on a most infected neighborhood of the community, where a neighborhood is usually several city blocks. We present extensive computational results, some applied to a small New England city.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/127833
Department
Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Journal
PLoS ONE
Publisher
Public Library of Science (PLoS)
Citation
Larson, Richard C. et al. "Sampling manholes to home in on SARS-CoV-2 infections." PLoS ONE 15, 10 (October 2020): e0240007 © 2020 Larson et al.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.