Show simple item record

dc.contributor.authorKoyama, Motomichi
dc.contributor.authorTaheri Mousavi, Seyedeh Mohadeseh
dc.contributor.authorYan, Haoxue
dc.contributor.authorKim, Jinwoo
dc.contributor.authorCameron, Benjamin Clive
dc.contributor.authorMoeini Ardakani, Sina(Seyed Sina)
dc.contributor.authorLi, Ju
dc.contributor.authorTasan, Cemal
dc.date.accessioned2020-10-08T19:44:40Z
dc.date.available2020-10-08T19:44:40Z
dc.date.issued2020-06
dc.date.submitted2019-08
dc.identifier.issn2375-2548
dc.identifier.urihttps://hdl.handle.net/1721.1/127843
dc.description.abstractHydrogen, while being a potential energy solution, creates arguably the most important embrittlement problem in high-strength metals. However, the underlying hydrogen-defect interactions leading to embrittlement are challenging to unravel. Here, we investigate an intriguing hydrogen effect to shed more light on these interactions. By designing an in situ electron channeling contrast imaging experiment of samples under no external stresses, we show that dislocations (atomic-scale line defects) can move distances reaching 1.5 μm during hydrogen desorption. Combining molecular dynamics and grand canonical Monte Carlo simulations, we reveal that grain boundary hydrogen segregation can cause the required long-range resolved shear stresses, as well as short-range atomic stress fluctuations. Thus, such segregation effects should be considered widely in hydrogen research. ©2020 The Authors.en_US
dc.description.sponsorshipJSPS KAKENHI (JP16H06365)en_US
dc.description.sponsorshipJSPS KAKENHI (JP20H02457)en_US
dc.description.sponsorshipSwiss National Science Foundation grant (P300P2_171423)en_US
dc.description.sponsorshipNSF CMMI-1922206en_US
dc.description.sponsorshipDepartment of the Navy, ONR (N00014-18-1-2284)en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttps://dx.doi.org/10.1126/sciadv.aaz1187en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleOrigin of micrometer-scale dislocation motion during hydrogen desorptionen_US
dc.typeArticleen_US
dc.identifier.citationKoyama, Motomichi et al., "Origin of micrometer-scale dislocation motion during hydrogen desorption." Science Advances 6, 23 (June 2020): eaaz1187 doi. 10.1126/sciadv.aaz1187 ©2020 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-11T17:23:01Z
dspace.date.submission2020-09-11T17:23:03Z
mit.journal.volume6en_US
mit.journal.issue23en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record